走向现代数学系列学术报告第801期将举办磁流体力学专题研讨会

  • 2025年6月12日消息

汕头大学数学研究所将于6月14日举办"走向现代数学"系列学术报告第801期,邀请中国科学院数学与系统科学研究院毛士鹏研究员作专题学术报告。

报告详情

  • 主题:A Gauss’s law preserving, helicity, mass, charge current, energy-conserving finite element method for incompressible MHD systems
  • 主讲人:毛士鹏 研究员(中国科学院博士生导师)
  • 主持人:单丽 副教授
  • 时间:2025年6月14日 15:00
  • 地点:汕大东海岸校区D实209

内容摘要

毛士鹏研究员将介绍课题组在三维不可压缩磁流体动力学方程研究中取得的重要突破:

  1. 首次提出同时保持质量守恒、磁高斯定律、能量守恒等关键物理特性的新型有限元方案
  2. 首次建立保持磁流体螺旋特性的线性计算方案
  3. 开发适用于高雷诺数工况的高效块预处理技术
  4. 通过数值实验验证方案在极端物理参数下的稳定性

主讲人简介

毛士鹏研究员2008年获中科院博士学位,先后在法国国家信息自动化研究院和瑞士苏黎世联邦理工学院从事研究工作。2019年起任中科院数学与系统科学研究院研究员,发表SCI论文90余篇,主要研究方向为有限元方法、计算流体力学及多物理场计算。

Shantou University to Host 801st Lecture in "Towards Modern Mathematics" Series

  • June 12, 2025

The Institute of Mathematics at Shantou University will host the 801st lecture in the "Towards Modern Mathematics" academic series on June 14th, featuring Researcher Mao Shipeng from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences.

Lecture Details

  • Topic: A Gauss’s law preserving, helicity, mass, charge current, energy-conserving finite element method for incompressible MHD systems
  • Speaker: Researcher Mao Shipeng (CAS Doctoral Supervisor)
  • Host: Associate Professor Shan Li
  • Time: 15:00, June 14, 2025
  • Venue: Room D209, East Coast Campus

Research Highlights

Researcher Mao will present breakthrough developments in three-dimensional incompressible magnetohydrodynamic equations:

  1. Novel finite element scheme preserving mass conservation, Gauss's law, and energy conservation
  2. First linear computational model maintaining magnetic helicity properties
  3. Efficient block preconditioning techniques for high-Reynolds number scenarios
  4. Experimental validation of scheme stability under extreme physical parameters

Speaker Profile

Dr. Mao Shipeng obtained his Ph.D. from CAS in 2008, with research experience at INRIA France and ETH Zurich. Appointed researcher at AMSS-CAS in 2019, he has published over 90 SCI papers specializing in finite element methods, computational fluid dynamics, and multi-physics modeling.

Source: STU OA